"/>

麻豆中文字幕丨欧美一级免费在线观看丨国产成人无码av在线播放无广告丨国产第一毛片丨国产视频观看丨七妺福利精品导航大全丨国产亚洲精品自在久久vr丨国产成人在线看丨国产超碰人人模人人爽人人喊丨欧美色图激情小说丨欧美中文字幕在线播放丨老少交欧美另类丨色香蕉在线丨美女大黄网站丨蜜臀av性久久久久蜜臀aⅴ麻豆丨欧美亚洲国产精品久久蜜芽直播丨久久99日韩国产精品久久99丨亚洲黄色免费看丨极品少妇xxx丨国产美女极度色诱视频www

Scientists make breakthrough in AI navigational ability

Source: Xinhua    2018-05-14 19:25:31

LONDON, May 14 (Xinhua) -- Scientists have found ways for artificial intelligence (AI) to create navigational ability.

An artificial agent was developed to approximate grid cells, a type of neuron in the brains of many mammal species that allows them to understand their position in space, according to a research report published last week in the journal Nature.

By combining an artificial recurrent network with a larger network architecture, an agent was formed with a deep reinforcement learning ability to navigate itself to goals in challenging virtual reality game environments.

"This agent performed at a super-human level ... exhibited the type of flexible navigation normally associated with animals," said scientists at the London-headquartered Deepmind.

The study tested the theory that grid cells support vector-based navigation, enabling the mammalian brain to calculate the distance and direction to a desired destination.

The results also reflect the philosophy that algorithms used for AI can meaningfully approximate elements of the brain.

"In the future such networks may well provide a new way for scientists to conduct 'experiments', suggesting new theories and even complementing some of the work that is currently conducted in animals," according to Deepmind scientists.

Acquired by Google in 2016, Deepmind is the creator of AlphaGo that is focused on machine learning.

Editor: Li Xia
Related News
Xinhuanet

Scientists make breakthrough in AI navigational ability

Source: Xinhua 2018-05-14 19:25:31

LONDON, May 14 (Xinhua) -- Scientists have found ways for artificial intelligence (AI) to create navigational ability.

An artificial agent was developed to approximate grid cells, a type of neuron in the brains of many mammal species that allows them to understand their position in space, according to a research report published last week in the journal Nature.

By combining an artificial recurrent network with a larger network architecture, an agent was formed with a deep reinforcement learning ability to navigate itself to goals in challenging virtual reality game environments.

"This agent performed at a super-human level ... exhibited the type of flexible navigation normally associated with animals," said scientists at the London-headquartered Deepmind.

The study tested the theory that grid cells support vector-based navigation, enabling the mammalian brain to calculate the distance and direction to a desired destination.

The results also reflect the philosophy that algorithms used for AI can meaningfully approximate elements of the brain.

"In the future such networks may well provide a new way for scientists to conduct 'experiments', suggesting new theories and even complementing some of the work that is currently conducted in animals," according to Deepmind scientists.

Acquired by Google in 2016, Deepmind is the creator of AlphaGo that is focused on machine learning.

[Editor: huaxia]
010020070750000000000000011100001371782871