麻豆中文字幕丨欧美一级免费在线观看丨国产成人无码av在线播放无广告丨国产第一毛片丨国产视频观看丨七妺福利精品导航大全丨国产亚洲精品自在久久vr丨国产成人在线看丨国产超碰人人模人人爽人人喊丨欧美色图激情小说丨欧美中文字幕在线播放丨老少交欧美另类丨色香蕉在线丨美女大黄网站丨蜜臀av性久久久久蜜臀aⅴ麻豆丨欧美亚洲国产精品久久蜜芽直播丨久久99日韩国产精品久久99丨亚洲黄色免费看丨极品少妇xxx丨国产美女极度色诱视频www

American, Chinese scientists develop system to effectively test drug function

Source: Xinhua| 2018-06-19 03:09:22|Editor: Chengcheng
Video PlayerClose

WASHINGTON, June 18 (Xinhua) -- American and Chinese scientists have developed droplet-sized "mini-ecosystems" that can quickly see if a molecule can function as a potential therapeutic.

The study published on Monday in the journal Proceedings of the National Academy of Sciences described the new method that allowed researchers save critical time and funding by simultaneously testing how could drug candidates bind to their cellular targets and alter cell function.

The method was building on antibody phage display, a technology that scientists could use to label and test antibodies for their ability to bind to a biological target.

But in the vast group of antibodies with a binding affinity for the disease target, there may be only a few antibodies that have the right biological functions. Testing these antibodies for function adds time and expense to the drug discovery process.

The new mini-ecosystem method can test for affinity and function at the same time, according to scientists from Scripps Research in the United States and from ShanghaiTech University, Peking University and the University of Hong Kong.

The mini-ecosystems are held in droplets the size of a picoliter, or one-trillionth of a liter. In these cramped quarters, the researchers brought together a mammalian cell and E. coli bacteria.

The bacteria produce phage that serve as carriers for antibody drug candidates. These antibodies on phage surface can interact with the mammalian cell in the same system.

The mammalian cell in the droplet is engineered to express a fluorescent protein if properly targeted by an antibody.

This means that in one step, scientists can test antibody affinity and function, potentially making drug discovery more time- and cost-effective.

"Co-cultivation of mammalian and bacteria cells in mini-ecosystems makes it possible to select functional antibodies directly with phage display," said Zheng Tianqing, postdoctoral associate at Scripps Research and the paper's first author.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001372633491