麻豆中文字幕丨欧美一级免费在线观看丨国产成人无码av在线播放无广告丨国产第一毛片丨国产视频观看丨七妺福利精品导航大全丨国产亚洲精品自在久久vr丨国产成人在线看丨国产超碰人人模人人爽人人喊丨欧美色图激情小说丨欧美中文字幕在线播放丨老少交欧美另类丨色香蕉在线丨美女大黄网站丨蜜臀av性久久久久蜜臀aⅴ麻豆丨欧美亚洲国产精品久久蜜芽直播丨久久99日韩国产精品久久99丨亚洲黄色免费看丨极品少妇xxx丨国产美女极度色诱视频www

Key diamond-pencil structural link points to major health, technology advances: Aussie research

Source: Xinhua| 2019-01-19 14:47:20|Editor: Chengcheng
Video PlayerClose

SYDNEY, Jan. 19 (Xinhua) -- Australian scientists on Saturday said they have used computers to uncover a crucial structural link between diamonds and pencils, pointing to a major step in material analysis with huge implications for future technologies ranging from mobile communications to medical treatment.

Griffith University and University of New South Wales researchers tapped the computers to show that the diamond structure of commonly used compound boron-nitride is more stable than the graphite structure of a pencil, according to their statement.

Carbon has two chemical neighbors, boron and nitrogen, which together act very much like carbon on its own, said the researchers. The resulting boron-nitride compound also comes in diamond and graphite forms, which are like carbon in some ways but dramatically different in others.

"The problem is, experiments struggle to differentiate which of the two forms is more stable, and at what temperature they swap," said Griffith University's Dr. Tim Gould.

"We were able to solve this problem by using supercomputers ... to understand the stability of the two pristine structures," said Gould.

"We used cutting-edge theoretical methods that were able to achieve a level of precision even better than experimental work, which involved the challenging task of turning diamonds into pencils. We were thus able to answer the questions that experiments could not," he said.

The latest findings, which were published in scientific journal Sciences Advances, has direct implications for how boron-nitride compounds can be used in various technologies, according to the researchers.

The study also means new material design can increasingly be automated using computers, which can "churn through thousands of compounds in the time it would take several people to make one compound in a laboratory," they said.

"Before long mobile phones will have materials that were invented on a computer. Eventually, it could allow drugs to be tailor-made for a specific person and illness," according to the researchers.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001377571721