麻豆中文字幕丨欧美一级免费在线观看丨国产成人无码av在线播放无广告丨国产第一毛片丨国产视频观看丨七妺福利精品导航大全丨国产亚洲精品自在久久vr丨国产成人在线看丨国产超碰人人模人人爽人人喊丨欧美色图激情小说丨欧美中文字幕在线播放丨老少交欧美另类丨色香蕉在线丨美女大黄网站丨蜜臀av性久久久久蜜臀aⅴ麻豆丨欧美亚洲国产精品久久蜜芽直播丨久久99日韩国产精品久久99丨亚洲黄色免费看丨极品少妇xxx丨国产美女极度色诱视频www

Study shows antibiotic treatment slows Alzheimer's symptoms in male mice

Source: Xinhua| 2019-05-21 06:05:29|Editor: Shi Yinglun
Video PlayerClose

CHICAGO, May 20 (Xinhua) -- The type of bacteria living in the gut can influence the development of Alzheimer's disease symptoms in mice, according to a study posted on the website of the University of Chicago (UChicago) on Monday.

By altering the gut microbiome, long-term antibiotic treatment reduces inflammation and slows the growth of amyloid plaques in the brains of male mice, though the same treatment has no effect on female animals.

In the study, researchers at the university examined the effects of antibiotics on a different mouse model of Alzheimer's disease known as APPS1-21. Long-term treatment with a cocktail of antibiotics reduced the formation of amyloid plaques in male mice but had no effect on females.

Antibiotic treatment also appeared to alter the activation of microglia in male mice, changing them from a form that is thought to promote neurodegeneration to a form that helps to maintain a healthy brain.

To prove that these improvements in Alzheimer's symptoms were caused by alterations in the gut microbiome, the researchers transplanted fecal matter from untreated mice into antibiotic-treated animals. This procedure restored the gut microbiome and caused an increase in amyloid plaque formation and microglial activation.

As for why alterations in the gut microbiome only affect male mice, the researchers discovered that long-term antibiotic treatment changed the gut bacteria of male and female mice in different ways. The changes in the microbiome of female mice caused their immune systems to increase production of several proinflammatory factors that could influence the activation of microglia.

"Our study shows that antibiotic-mediated perturbations of the gut microbiome have selective, sex-specific influences on amyloid plaque formation and microglial activity in the brain," said Sangram Sisodia, director of the Center for Molecular Neurobiology at UChicago. "We now want to investigate whether these outcomes can be attributed to changes in any particular type of bacteria."

Alzheimer's patients exhibit changes in their gut microbiome. Previous study shows that gut bacteria may influence the development of these symptoms in rodents.

Alzheimer's disease is characterized by the formation of amyloid plaques and the activation of immune cells present in the brain known as microglia. These cells can help remove amyloid plaques, but their activation may also exacerbate the disease by causing neuroinflammation.

The study was published in the Journal of Experimental Medicine.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001380752891